Mouse mammary tumor virus gene expression is suppressed by oligomeric ellagitannins, novel inhibitors of poly(ADP-ribose) glycohydrolase.
نویسندگان
چکیده
Oligomeric ellagitannins (nobotanins B, E, and K) were found to be potent inhibitors of poly(ADP-ribose) glycohydrolase purified from mouse mammary tumor 34I cells. Kinetic analysis revealed that the inhibition of nobotanin B (dimer) was competitive with respect to the substrate poly(ADP-ribose), whereas nobotanin E (trimer) and nobotanin K (tetramer) exhibited mixed-type inhibition. These results suggest that the dimeric structure of ellagitannin may have a functional domain that competes with poly(ADP-ribose) on the poly(ADP-ribose) glycohydrolase molecule. To determine the inhibitory effects of oligomeric ellagitannins on poly(ADP-ribose) glycohydrolase in vivo, we examined their effects on de-poly(ADP-ribosyl)ation of some chromosomal proteins in intact 34I cells that was induced by glucocorticoid treatment. Nobotanin B caused concentration-dependent inhibition of glucocorticoid-induced de-poly(ADP-ribosyl)ation of HMG 14 and 17 and histone H1 in intact 34I cells. Interestingly, this inhibition was associated with suppression of the glucocorticoid-sensitive mouse mammary tumor virus (MMTV) mRNA synthesis. In contrast, nobotanin E and K had little inhibitory effect on either de-poly(ADP-ribosyl)ation of these proteins or induction of MMTV transcription after glucocorticoid treatment. Nobotanin B but not E and K was taken into 34I cells. These results may suggest that the suppression of glucocorticoid-sensitive MMTV transcription results from in vivo inhibition of poly(ADP-ribose) glycohydrolase by nobotanin B. These results also indicate the importance of de-poly(ADP-ribosyl)ation of HMG 14 and 17 and histone H1 in regulation of transcription of the glucocorticoid-sensitive MMTV gene.
منابع مشابه
Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage
Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a lo...
متن کاملProtein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses
Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen tr...
متن کاملInhibition of poly(ADP-ribose) glycohydrolase by gallotannin selectively up-regulates expression of proinflammatory genes.
Poly(ADP-ribose)-polymerase-1 (PARP-1) and poly(ADP-ribose) (PAR) are emerging key regulators of chromatin superstructure and transcriptional activation. Accordingly, both genetic inactivation of PARP-1 and pharmacological inhibition of PAR formation impair the expression of several genes, including those of the inflammatory response. In this study, we asked whether poly(ADP-ribose) glycohydrol...
متن کاملSpecific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase
Poly(ADP-ribosylation) of proteins following DNA damage is well studied and the use of poly(ADP-ribose) polymerase (PARP) inhibitors as therapeutic agents is an exciting prospect for the treatment of many cancers. Poly(ADP-ribose) glycohydrolase (PARG) has endo- and exoglycosidase activities which can cleave glycosidic bonds, rapidly reversing the action of PARP enzymes. Like addition of poly(A...
متن کاملSelective small molecule inhibition of poly(ADP-ribose) glycohydrolase (PARG).
The poly(ADP-ribose) (PAR) post-translational modification is essential for diverse cellular functions, including regulation of transcription, response to DNA damage, and mitosis. Cellular PAR is predominantly synthesized by the enzyme poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is a critical node in the DNA damage response pathway, and multiple potent PARP-1 inhibitors have been described, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 267 20 شماره
صفحات -
تاریخ انتشار 1992